The transcription factor Pax6 is required for pancreatic β cell identity, glucose-regulated ATP synthesis, and Ca2+ dynamics in adult mice

نویسندگان

  • Ryan K. Mitchell
  • Marie-Sophie Nguyen-Tu
  • Pauline Chabosseau
  • Rebecca M. Callingham
  • Timothy J. Pullen
  • Rebecca Cheung
  • Isabelle Leclerc
  • David J. Hodson
  • Guy A. Rutter
چکیده

Heterozygous mutations in the human paired box gene PAX6 lead to impaired glucose tolerance. Although embryonic deletion of the Pax6 gene in mice leads to loss of most pancreatic islet cell types, the functional consequences of Pax6 loss in adults are poorly defined. Here we developed a mouse line in which Pax6 was selectively inactivated in β cells by crossing animals with floxed Pax6 alleles to mice expressing the inducible Pdx1CreERT transgene. Pax6 deficiency, achieved by tamoxifen injection, caused progressive hyperglycemia. Although β cell mass was preserved 8 days post-injection, total insulin content and insulin:chromogranin A immunoreactivity were reduced by ∼60%, and glucose-stimulated insulin secretion was eliminated. RNA sequencing and quantitative real-time PCR analyses revealed that, although the expression of key β cell genes, including Ins2, Slc30a8, MafA, Slc2a2, G6pc2, and Glp1r, was reduced after Pax6 deletion, that of several genes that are usually selectively repressed ("disallowed") in β cells, including Slc16a1, was increased. Assessed in intact islets, glucose-induced ATP:ADP increases were significantly reduced (p < 0.05) in βPax6KO versus control β cells, and the former displayed attenuated increases in cytosolic Ca2+ Unexpectedly, glucose-induced increases in intercellular connectivity were enhanced after Pax6 deletion, consistent with increases in the expression of the glucose sensor glucokinase, but decreases in that of two transcription factors usually expressed in fully differentiated β-cells, Pdx1 and Nkx6.1, were observed in islet "hub" cells. These results indicate that Pax6 is required for the functional identity of adult β cells. Furthermore, deficiencies in β cell glucose sensing are likely to contribute to defective insulin secretion in human carriers of PAX6 mutations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microphthalmia Transcription Factor Regulates Pancreatic β-Cell Function

Precise regulation of β-cell function is crucial for maintaining blood glucose homeostasis. Pax6 is an essential regulator of β-cell-specific factors like insulin and Glut2. Studies in the developing eye suggest that Pax6 interacts with Mitf to regulate pigment cell differentiation. Here, we show that Mitf, like Pax6, is expressed in all pancreatic endocrine cells during mouse postnatal develop...

متن کامل

β Cells led astray by transcription factors and the company they keep.

Pancreatic β cells have one of the highest protein secretion burdens in the body, as these cells must synthesize and secrete insulin in proportion to postprandial rises in blood glucose. Remarkably, it is now becoming clear that adult β cells retain plasticity and can dedifferentiate into embryonic fates or adopt alternate islet endocrine cell identities. This property is especially important, ...

متن کامل

The Developmental Regulator Pax6 Is Essential for Maintenance of Islet Cell Function in the Adult Mouse Pancreas

The transcription factor Pax6 is a developmental regulator with a crucial role in development of the eye, brain, and olfactory system. Pax6 is also required for correct development of the endocrine pancreas and specification of hormone producing endocrine cell types. Glucagon-producing cells are almost completely lost in Pax6-null embryos, and insulin-expressing beta and somatostatin-expressing...

متن کامل

Elevated Hedgehog/Gli signaling causes β-cell dedifferentiation in mice

Although Hedgehog (Hh) signaling regulates cell differentiation during pancreas organogenesis, the consequences of pathway upregulation in adult β-cells in vivo have not been investigated. Here, we elevate Hh signaling in β-cells by expressing an active version of the GLI2 transcription factor, a mediator of the Hh pathway, in β-cells that are also devoid of primary cilia, a critical regulator ...

متن کامل

Tissue-specific transcriptional activity of a pancreatic islet cell-specific enhancer sequence/Pax6-binding site determined in normal adult tissues in vivo using transgenic mice.

A pancreatic islet cell-specific enhancer sequence (PISCES) shared by the rat insulin-I, glucagon, and somatostatin genes binds the paired domain-containing transcription factor Pax6 and confers strong transcriptional activity in pancreatic islet cell lines. It was found recently that Pax6 plays a major role in islet development. In the present study, transgenic mice were used to investigate PI...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 292  شماره 

صفحات  -

تاریخ انتشار 2017